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Objective

 J Validate the ar tif icial intelligence-based Variant 
Classification Engine (aiVCE) using the ClinVar database 
through a blinded time-capsule experiment to predict 
the algorithm’s ability to classify variants uploaded to the 
ClinVar database after the time capsule cutoff date. 

Introduction and Methods

Artificial Intelligence-Based Variant Classification 
Engine (aiVCE)

 J Supports the extraction of massive and existing evidential 
data from various data sources (databases and published 
literature)

 — Continual assimilation of current public variant-level 
information

 J Is based on ACMG/AMP standards and guidelines plus a 
machine-learning process to implement variant classifica-
tion rules for novel and reported variants 

 — aiVCE automates 17/28 ACMG rules

 J End users can input evidence for remaining rules (e.g., 
rules specific to patient genotype)

 J Determines internal numeric Classification Score to facili-
tate VUS subclassification

 J Assigns Evidence Scores — for variants consolidated from 
ClinVar, UniProt, in-house curated evidence etc. — which 
create an internal Variant KnowledgeBase and form the 
basis of classifying any new variant

 — Aggregated gene-level models are generated based 
on the Variant KnowledgeBase to determine gene-
level data e.g. frequency thresholds and known 
disease mechanisms for a gene

 J aiVCE emphasizes robust sensitivity in detecting P vari-
ants, even at the expense of specificity, as identifying all P 
variants is the focus

 J Provides comprehensive annotation for clinical use

 J Benchmarked using ClinVar (version 2018-10) variants

Datasets
 J ‘Full’ dataset: 75,801 variants with ≥1 star, limited to ≥1 

CLIA-certified laboratory submitter and without conflicting 
interpretations, spanning 3,115 different genes

 J ‘Increased-Certainty’ dataset: A subset dataset of 3,993 
variants with ≥2 stars, across 638 different genes, variants 
in the Increased-Certainty dataset had ≥2 submitters with 
no conflicts or were EP-reviewed (https://www.ncbi.nlm.
nih.gov/clinvar/docs/details/)

Legend Key: ACMG, American College of Medical Genetics 
and Genomics; aiVCE, artificial intelligence-based Variant 
Classification Engine; B, benign; CI, confidence interval; 
LB, likely benign; LP, likely pathogenic; P, pathogenic; VUS, 
variant of uncertain significance; VUS-LB, VUS-leaning 
benign; VUS-LP, VUS-leaning pathogenic

ACMG Standards and Guidelines

Criteria for classifying variants to homogenize methods and 
reduce discordance and ambiguity between labs. 

 J Standards and guidelines for the interpretation of 
sequence variants: a joint consensus recommendation of 
the American College of Medical Genetics and Genomics 
and the Association for Molecular Pathology (Richards et 

al., 2015)

 J Weighted rules related to:

 — Variant frequency

 — Variant type

 — Association to previous reports for pathogenicity

 — Consistency with inheritance model

 J Evidence of pathogenicity (P supporting rules): very 
strong (PVS1), strong (PS1-PS4, moderate (PM1-PM6), and 
supporting (PP1-PP5)

 J Evidence of benign impact (B supporting rules): stand-
alone (BA1), strong (BS1-BS4), and supporting (BP1-BP7)

Results

ABSTRACT

Introduction: Next-generation sequencing (NGS) technology and shared archives usage has expanded, thus increasing the 
volume of variant classification data and the need for novel analytical approaches. Information derived from the classification of 
variants is critical to discovering or confirming disease etiologies and directing treatment guidelines and patient-specific plans. 
The complexities of variant classification, however, require assemblage and assessment of continually updated information. 

We developed a novel AI-based Variant Classification Engine (aiVCE) algorithm, based on ACMG/AMP standards and guide-
lines, to integrate knowledge from available databases and literature and to expedite gene-specific variant classification. The 
aiVCE algorithm can assess all classification criteria amenable to automation and places particular emphasis on considering 
gene-specific evidence at the gene level, consistent with the latest efforts by ClinGen Expert Panels (EPs).

This blinded study, assessed the aiVCE’s overall and rule-level performance using ClinVar variants. Evaluation of discordance 
between aiVCE and ClinVar uncovered evidence that may not have been available to submitting laboratories, highlighting AI’s 
utility in variant classification. Applying AI-enhanced computational methodologies to existing guidelines for future ClinVar 
variant evaluation may assist the classification and interpretation of variants with limited clinical information, thus greatly reducing 
analytical bottlenecks.

Methods: aiVCE’s overall and rule-level performance was evaluated utilizing ClinVar variants with reference/submission creation 
dates on or before 05/01/2017 (‘Train’) and after 05/01/2017 (‘Test’). 

‘Full’ (75,801 variants with ≥1 star, including only submissions from CLIA-certified laboratories) and ‘Increased-Certainty’ (3,993 
variants with ≥2 stars) datasets were evaluated. 
‘Test’ variants were classified as pathogenic (P), likely-pathogenic (LP), uncertain significance (VUS), likely-benign (LB), or benign 
(B). VUS with sufficient supporting data were subclassified as VUS-leaning benign or VUS-leaning pathogenic. aiVCE results 
were evaluated to determine concordance with final ClinVar classification and rule-level determinations. 

Results: The aiVCE demonstrated concordance among Increased-Certainty variants of >97%, while concordance was >95% 
across variant effects (missense, synonymous, null, splice region, intronic, untranslated region, non-frameshift indels). For the 
Full data set, concordance was >93.5%. When assessing the aiVCE’s application of the different ACMG rules, significant differ-
ences were observed between ClinVar P/LP and B/LB variants (all p-values <0.00001) across the different rules, thus making a 
case for gene-specific rule selections. The aiVCE exhibited robust performance in categorizing variants as P/LP.

Conclusion: The aiVCE algorithm, even without input from clinical databases specific to the ‘Test’ set, could predict with very 
high concordance whether a variant would be categorized as P/LP. Therefore, robust algorithms that apply the latest compu-
tational methodologies to ACMG/AMP guidelines may assist variant scientists with classification and interpretation of variants, 
including those with limited clinical information.

Knowledge derived from computational methodologies can augment human expertise and judgment required to 
deduce final variant classifications which can aid clinical and research laboratory professionals in the current era char-
acterized by increased complexity of variant analysis and interpretation.

Table 4. Distribution of variant effects overall and by 
ClinVar classification – Increased-Certainty dataset

Effects All ClinVar
ClinVar 

P
ClinVar 

VUS
ClinVar 

B

Number of variants 3,993 531 1,755 1,707

Null variants, n (%) 477 (11.94%) 453 19 4

Frameshift 295 287 8 0

Nonsense 119 110 7 2

Splice Donor/Acceptor 59 56 1 2

Start-loss 4 1 3 0

Intronic and UTR, n (%) 105 (2.62%) 0 5 100

Splice Region, n (%) 291 (7.28%) 7 63 221

Synonymous, n (%) 1,204 (30.14%) 1 11 1,192

Missense, n (%) 1,878 (47.02%) 66 1,627 184

Non-frameshift Indels, n (%) 39 (0.97%) 3 30 6

 J Concordance between aiVCE and ClinVar classifications 
showed strong agreement across all groupings even 
in variants typically considered difficult to classify, e.g. 
missense and splice region variants.

 — Missense variants comprised the largest group in 
both datasets (Full: 47.07%, Increased-Certainty: 
47.02%), followed by synonymous variants, null 
variants, splice region variants, intronic and 
untranslated region (UTR) variants, and non-frame-
shift indel variants (Table 4, only the results for 
the Increased-Certainty dataset are shown).

 — Respective levels of concordance in the Full and 
Increased-Certainty datasets were:

• 85.74% and 99.91% for null variants

• 90.27% and 95.30% for missense variants

• 99.91% and 99.92% for synonymous variants

• 98.90% and 100% for intronic/UTR variants not located 
in a splice region

• 96.58% and 97.59% for variants located in a splice region

aiVCE Performance Across Disease Categories

Variant Classification by Effect

 J Robust performance of gene-specific frequency- 
related rules across various disease mechanisms.

 J Employed 6 gene panels from the Genomics England 
PanelApp (https://panelapp.genomicsengland.
co.uk/):

 — RASopathies, Hereditary Ataxia, Familial Breast 
Cancer, Hereditary Neuropathy, Hearing Loss, 
and Confirmed Fanconi Anemia (FA) or Bloom 
Syndrome (BS). 

 — High concordance (92.67% – 98.4%) observed 
across the various disease categories evaluated 
for the Full dataset (Table 3).

Table 3. Concordance between the aiVCE and ClinVar 
classifications of P/LP variants by disease – Full dataset. 
Based on 2-tier classification (P/LP vs. B/LB/VUS)

Disease Number of Variants Concordance

Hereditary Neuropathy 11,943 94.78%

RASopathies 1,194 94.52%

Hereditary Ataxia 4,553 94.24%

Familial Breast Cancer 7,164 98.25%

Hearing Loss 7,617 92.67%
Fanconi Anemia/Bloom Syndrome 3,633 98.40%

Variants and ACMG Rule
 J When considering gene-specific rules for missense variants, aiVCE differentially applied 

P-supporting (PS1, PM1, PM5, PP2, PP3) rules to P/LP variants, and B-supporting (BP1) rules to 
B/LB variants (p<0.00001 for each rule) (Figure 1). 

 — The aiVCE differentiated between P/LP vs. B/LB missense variants.

 — Percentages were derived as number of variants for which each rule is met divided by total 
number of variants for each ClinVar classification (P/LP, VUS, B/LB).

(a) Missense (b) Loss of function (L0F)

(c) Splice region (d) Synonymous

Figure 1. Distribution of ClinVar variants by aiVCE application of ACMG rules – Full dataset.

 J The distribution of ClinVar variants — according to the aiVCE application 
of ACMG rules and ClinVar submitter classifications — demonstrated a 
significant difference (p<0.0001) of P-supporting rules, as well as for 
application of B-supporting rules, to P/LP vs. B/LB variants (Figure 2).

Figure 2. Distribution of ClinVar variants by aiVCE application of 
ACMG rules.

Variant Classification Concordance/
Discordance

 J High aiVCE and ClinVar concordance with 2-tier classification 
based on medical importance.

 — Increased-Certainty dataset: 97.29% (95% CI: 96.79% – 
97.79%) (Table 1).

 — Full dataset: 93.78% (95% CI: 93.61% – 93.95%) (Table 2).

 J aiVCE can further classify VUS variants as VUS-LB or VUS-LP 
which provides useful variant prioritization.

 — Of the Full dataset (58,067 variants) 7,282 (12.5%) variants 
were sub-classified as either VUS-LP or VUS-LB (Table 2).

 — Discordance of only 1.2% variants called as VUS-LP by 
the aiVCE but were LB in ClinVar and only 0.05% variants 
called as VUS-LB by the aiVCE but LP in ClinVar.

Table 1. Benchmarking an aiVCE using a time-capsule of 
the ClinVar database — Increased-Certainty dataset

aiVCE B LB VUS-LB VUS VUS-LP LP P

ClinVar

B 123 44 9 10 0 0 0

LB 24 146 63 1,286 1 1 0

VUS 0 172 41 1,327 166 49 0

LP 0 0 0 12 16 58 0

P 0 0 0 12 18 415 0

aiVCE B/LB/VUS P/LP Concordance 
(95% CI)ClinVar

B/LB 3,412 50 97.29%

P/LP 58 473 (96.79% – 97.79%)
aiVCE, artificial intelligence-based Variant Classification Engine; B, benign; CI, confidence 
interval; LB, likely benign; LP, likely pathogenic; P, pathogenic; VUS, variant of uncertain 
significance; VUS-LB, VUS-leaning benign; VUS-LP, VUS-leaning pathogenic

Table 2. Benchmarking an aiVCE using a time-capsule of 
the ClinVar database — Full dataset

aiVCE B LB VUS-LB VUS VUS-LP LP P

ClinVar

B 2,096 1,093 203 806 9 4 0

LB 588 1,719 865 20,967 82 32 0

VUS 61 1,562 372 27,807 4,342 2,040 5

LP 5 5 3 919 1,125 4,497 3

P 5 3 1 286 280 4,007 9

aiVCE B/LB/VUS P/LP Concordance 
(95% CI)ClinVar

B/LB/VUS 62,572 2,081 93.78% 

P/LP 2,632 8,516 (96.70% – 98.02%)
aiVCE, artificial intelligence-based Variant Classification Engine; B, benign; CI, confidence 
interval; LB, likely benign; LP, likely pathogenic; P, pathogenic; VUS, variant of uncertain 
significance; VUS-LB, VUS-leaning benign; VUS-LP, VUS-leaning pathogenic

CONCLUSIONS
 J This study benchmarked an aiVCE algorithm, previously shown 

to be a robust platform for comprehensive downstream analysis. 
The aiVCE algorithm:

 — Demonstrates robust concordance (>97%) in determining 
whether future variants would be categorized as P/LP

 — Predicts thresholds for variant/allele frequency-based rules

 — Is sensitive and specific in classifying variants — based on 
observations related to gene-specific rules

 J Highlights the importance of data sharing to reduce uncertainty 
in variant classification 

 — A data-driven, AI-based tool that relies on previous evidence 
making data-sharing and community initiatives like ClinVar 
and gnomAD essential

 J Development of a structured approach to incorporate additional 
information by databases such as ClinVar would provide evidence 
currently limited in aiVCE

 J Examination of discordance between aiVCE and ClinVar high-
lights the importance of regular re-analysis

 J ACMG/AMP criteria comprise more P-supporting than 
B-supporting rules → inclusion of additional B-supporting 
evidence may be warranted

 J Could streamline variant classification by automating ACMG 
rules for which supporting evidence is available

 — Assesses all classification criteria amenable to automation

 — Provides accurate interpretation of variants for clinical 
purpose

 — Scales the implementation of gene-specific recommendations


